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Abstract: Competition is a major driver of carbon allocation to different plant tissues (e.g. 17 

wood, leaves, fine roots), and allocation, in turn, shapes vegetation structure. To improve their 18 

modeling of the terrestrial carbon cycle, many Earth system models now incorporate vegetation 19 

demographic models (VDMs) that explicitly simulate the processes of individual-based 20 

competition for light and soil resources. Here, in order to understand how these competition 21 

processes affect predictions of the terrestrial carbon cycle, we simulate forest responses to 22 

elevated CO2 along a nitrogen availability gradient using a VDM that allows us to compare fixed 23 

allocation strategies versus competitively-optimal allocation strategies. Our results show that 24 

competitive- and fixed-allocation strategies predict opposite fractional allocation to fine roots 25 

and wood, though they predict similar changes in total NPP along the nitrogen gradient. The 26 

competitively-optimal allocation strategy predicts decreasing fine root and increasing wood 27 

allocation with increasing nitrogen, whereas the fixed allocation strategy predicts the opposite. 28 

Although simulated plant biomass at equilibrium increases with nitrogen due to increases in 29 

photosynthesis for both allocation strategies, the increase in biomass with nitrogen is much 30 

steeper for competitively-optimal allocation due to its increased allocation to wood. The 31 

qualitatively opposite fractional allocation to fine roots and wood of the two strategies also 32 

impacts the effects of elevated [CO2] on plant biomass. Whereas the fixed allocation strategy 33 

predicts an increase in plant biomass under elevated [CO2] that is approximately independent of 34 

nitrogen availability, competition’s effect on wood allocation amplifies plant biomass under 35 

elevated [CO2] with increasing nitrogen availability. Our results indicate that the VDMs that 36 

explicitly include the effects of competition for light and soil resources on plant strategies may 37 

generate significantly different ecosystem-level predictions than those that use fixed allocation 38 

strategies.  39 

40 
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1 Introduction 41 

Allocation of assimilated carbon to different plant tissues is a fundamental aspect of plant growth 42 

and profoundly affects terrestrial ecosystem biogeochemical cycles (Cannell and Dewar, 1994; 43 

Lacointe, 2000). Ecologically, allocation represents an evolutionarily-honed “strategy” of plants 44 

that use limited resources and compete with other individuals and consequently drives 45 

successional dynamics and vegetation structure (De Kauwe et al., 2014; DeAngelis et al., 2012; 46 

Haverd et al., 2016; Tilman, 1988).  Biogeochemically, allocation links plant physiological 47 

processes, such as photosynthesis and respiration, to biogeochemical cycles and carbon storage 48 

of ecosystems (Bloom et al., 2016; De Kauwe et al., 2014). Thus, correctly modeling allocation 49 

patterns is critical for correctly predicting terrestrial carbon cycles and Earth system dynamics. 50 

In current Earth System Models (ESMs), the terrestrial carbon cycle is usually simulated by 51 

pool-based compartment models that simulate ecosystem carbon and/or nitrogen cycles as 52 

lumped pools and fluxes of plant tissues and soil organic matter (Emanuel and Killough, 1984; 53 

Eriksson, 1971; Parton et al., 1987; Randerson et al., 1997; Sitch et al., 2003). In these models, 54 

the dynamics of carbon can be described by a linear system of equations (Koven et al., 2015; 55 

Luo et al., 2001; Luo and Weng, 2011; Sierra and Mueller, 2015; Xia et al., 2013):  56 

!"
!#
= 𝐴𝑋 + 𝐵𝑈         (Eq. 1) 57 

where X is a vector of ecosystem carbon pools, U is carbon input (i.e., Gross Primary Production, 58 

GPP), B is the vector of allocation parameters to autotrophic respiration and plant carbon pools 59 

(e.g., leaves, stems, and fine roots), and A is a matrix of carbon transfer and turnover. In this 60 

system, carbon dynamics are defined by carbon input (U), allocation (B), and residence time and 61 

transfer coefficients (A).  The allocation schemes (B) are thus embedded in a linear system, or 62 
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quasi-linear system if the allocation parameters in B are a function of carbon input (U) or plant 63 

carbon pools (X).  64 

The modeling of allocation in this system (i.e., the parameters in vector B) is usually based 65 

on plant allometry, biomass partitioning, and resource limitation (De Kauwe et al., 2014; 66 

Montané et al., 2017). The allocation parameters are either fixed ratios to leaves, stems, and 67 

roots, which may vary among plant functional types (e.g., CENTURY, Parton et al., 1987; TEM, 68 

Raich et al., 1991; CASA, Randerson et al., 1997) or are responsive to climate and soil 69 

conditions as a way to phenomenologically mimic the shifts in allocation that are empirically 70 

observed or hypothesized (e.g., CTEM, Arora and Boer, 2005; ORCHIDEE, Krinner et al., 2005; 71 

LPJ, Sitch et al., 2003). These modeling approaches either assume that vegetation is equilibrated 72 

(fixed ratios) or average the responses of plant types to changes in environmental conditions as a 73 

collective behavior. Thus, the carbon dynamics in these models can be constrained by selecting 74 

appropriate parameters of allocation, turnover rates, and transfer coefficients to fit the 75 

observations (Friend et al., 2007; Hoffman et al., 2017; Keenan et al., 2013).  76 

To predict transient changes in vegetation structure and composition in response to climate 77 

change, vegetation demographic models (VDMs) that are able to simulate transient population 78 

dynamics are incorporated into ESMs (Fisher et al., 2018; Scheiter and Higgins, 2009). 79 

Generally, these VDMs explicitly simulate plant reproduction, growth, and mortality to generate 80 

the dynamics of populations. To speed computations and minimize complexity, groups of 81 

individuals are usually modeled as cohorts. These models may also simulate the competition 82 

between individuals for light and soil resources to drive vegetation succession and thus changes 83 

in the combinations of plant traits that represent competition strategies at different stages 84 

(Scheiter et al., 2013; Scheiter and Higgins, 2009; Weng et al., 2015). Competitively-optimal 85 
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allocation strategies can therefore be reasonably predicted based on the costs and benefits of 86 

allocation strategies through their effects on demographic processes (i.e., fitness) and ecosystem 87 

biogeochemical cycles (Farrior et al., 2015; Weng et al., 2015).  88 

The processes of VDMs (e.g., demographic processes, individual-based competition for 89 

different resources, and community assembly) can be used to bring plant functional diversity and 90 

adaptive dynamics into ESMs, causing dominant plant traits to change in response to plant 91 

competition, environmental conditions, and ecosystem development. The dynamic response of 92 

plant traits can substantially change predictions of ecosystem biogeochemical dynamics of 93 

current ESMs since it changes the key parameters of vegetation physiological processes and soil 94 

organic matter decomposition (e.g., Dybzinski et al., 2015; Farrior et al., 2015; Weng et al., 95 

2017). Using the methodology of adaptive dynamics, the dynamics of plant trait(s) in succession 96 

can be described by a canonical equation in a simple and continuous case (Dieckmann et al., 97 

2007): 98 

!*
!#
= +

,
𝜇(𝑠)𝜎,(𝑠)𝑁(𝑠) 34(*5,*)

3*5
   (Eq. 2) 99 

where, µ is the mutation rate, σ2 is the variance of mutation distribution, N is the population size 100 

at equilibrium, and 34(*5,*)
3*5

 is the selection gradient. W(s', s) is the fitness function, measured as 101 

the fitness of a rare individual with trait value s' (i.e., a “mutant,” “novel colonist,” “invader,” or 102 

“challenger”) in an environment created by a population of individuals with trait value s (the 103 

“resident”).  104 

With such a model, the carbon dynamics of an ecosystem are the emergent result of 105 

competition among different strategies as represented by plant traits, and the most competitive 106 

strategies may shift with community composition during succession. The key parameters that are 107 

used to estimate carbon dynamics in the linear system model (Eq. 1), such as allocation (B) and 108 
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residence times in different carbon pools (matrix A, which includes coefficients of carbon 109 

transfer and turnover time) become functions of competition strategies that vary with 110 

environment and carbon input. In addition, the turnover of vegetation carbon pools becomes a 111 

function of allocation and mortality rates, which change with vegetation succession and the most 112 

competitive plant traits. These changes make the system nonlinear and can lead to large biases 113 

within the framework of the compartmental pool-based models as represented by Eq. (1) (Sierra 114 

et al., 2017; Sierra and Mueller, 2015). Because of  the high complexity associated with 115 

demographic and competition processes, the model predictions are usually sensitive to the 116 

parameters in these processes and are of high uncertainty (e.g., Pappas et al., 2016).  117 

In contrast to their implementation in the more complicated VDMs discussed above, 118 

models of competitively-dominant plant strategies using much simpler model structures and 119 

assumptions can sometimes be solved analytically (Dybzinski et al., 2011, 2015; Farrior et al., 120 

2013, 2015). Although simplified, such models can pin-point the key processes that improve the 121 

predictive power of simulation models (Dybzinski et al., 2011; Farrior et al., 2013, 2015), 122 

allowing them to help researchers formulate model processes and understand the simulated 123 

ecosystem dynamics in ESMs. For example, the analytical model derived by Farrior et al. (2013) 124 

that links interactions between ecosystem carbon storage, allocation, and water stress at elevated 125 

CO2 sheds light on the otherwise inscrutable processes leading to varied soil water dynamics in a 126 

land model coupled with an VDM (Weng et al., 2015). Recognizing the benefit, Weng et al. 127 

(2017) included both a simplified analytical model and a more complicated VDM to understand 128 

competitively optimal leaf mass per area, competition between evergreen and deciduous plant 129 

functional types, and the resulting successional patterns.  130 
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In this study, we use a stand-alone simulator derived from the LM3-PPA model (Weng et 131 

al., 2017, 2015) to show how forests respond to elevated CO2 and nitrogen availability via 132 

different competitively-optimal allocation strategies. The model is an individual-based 133 

vegetation demographic model, whose vegetation demographic scheme has been coupled into the 134 

land model of the Geophysical Fluid Dynamical Laboratory’s Earth System Model (Shevliakova 135 

et al., 2009; Weng et al., 2015) and NASA Goddard Institute for Space Study’s Earth system 136 

model, ModelE (Schmidt et al., 2014). Using this model, we simulate the shifts in competitively 137 

optimal allocation strategies in response to elevated CO2 at different nitrogen levels based on 138 

insights from the analytical model derived by Dybzinski et al. (2015). Dybzinski et al.’s (2015) 139 

model predicts that increases in carbon storage at elevated CO2 relative to storage at ambient 140 

CO2 are largely independent of total nitrogen because of an increasing shift in carbon allocation 141 

from long-lived, low-nitrogen wood to short-lived, high-nitrogen fine roots under elevated CO2 142 

with increasing nitrogen availability. Here, we analyze the simulated ecosystem carbon cycle 143 

variables (gross and net primary production, allocation, and biomass) of separate fixed-allocation 144 

and competitively-optimal allocation model runs. In the fixed-allocation runs, ecosystem 145 

properties are the result of the prescribed allocation strategies of a given PFT, analogous to the 146 

fixed allocation schemes of most VDMs (see above). In the competitively-optimal allocation 147 

runs, competition between the different allocation strategies results in succession and the 148 

eventual dominance of the most competitive allocation strategy for a given nitrogen availability 149 

and CO2 level. Since everything else in the model is identical, we are able to compare the 150 

predictions of fixed-allocation strategies with competitively-optimal allocation strategies by 151 

comparing the ecosystem properties of these two types of runs.   152 
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2 Methods and Materials 153 

2.1 BiomeE Model 154 

We used a stand-alone ecosystem simulator (Biome Ecological strategy simulator, 155 

BiomeE) to conduct simulation experiments. BiomeE is derived from the version of LM3-PPA 156 

used in Weng et al. (2017). We simplified the processes of energy transfer and soil water 157 

dynamics of LM3-PPA (Weng et al., 2015) but still retained the key features of plant physiology 158 

and individual-based competition for light, soil water, and, via the decomposition of soil organic 159 

matter, nitrogen (Fig. 1). In this model, individual trees are represented as sets of cohorts of 160 

similar size trees and are arranged in different vertical canopy layers according to their height 161 

and crown area following the rules of the Perfect Plasticity Approximation (PPA) model (Strigul 162 

et al., 2008). Sunlight is partitioned into these canopy layers according to Beer’s law. Thus, a key 163 

parameter for light competition, critical height, is defined; all the trees above this context-164 

dependent height get full sunlight and all trees below this height are shaded by the upper layer 165 

trees. Plant growth, reproduction, and mortality are driven by the carbon assimilation of leaves, 166 

which is in turn dependent on water and nitrogen uptake by fine roots.  167 

Each tree consists of seven pools: leaves, fine roots, sapwood, heartwood, fecundity 168 

(seeds), and non-structural carbohydrates and nitrogen (NSC and NSN, respectively) (Fig. 1: b). 169 

The carbon and nitrogen in plant pools enter the soil pools with the mortality of individual trees 170 

and the turnover of leaves and fine roots. There are three soil organic matter (SOM) pools for 171 

carbon and nitrogen: fast-turnover, slow-turnover, and microbial pools, along with a mineral 172 

nitrogen pool for mineralized nitrogen in soil. The simulation of SOM decomposition and 173 

nitrogen mineralization is based on the models of Gerber et al. (2010) and Manzoni et al. (2010) 174 

and described in detail in Weng et al. (2017). The decomposition rate of a SOM pool is 175 
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determined by the basal turnover rate together with soil temperature and moisture.  The nitrogen 176 

mineralization rate is a function of decomposition rate and the C:N ratio of the SOM. Microbes 177 

must consume more carbon in the high C:N ratio SOM pool to get enough nitrogen and must 178 

release excessive nitrogen in the low C:N ratio SOM pool to get enough carbon for energy 179 

(Weng et al. 2017). 180 

 181 

 182 

Figure 1. Model structure of BiomeE 183 

Panel A: vegetation structure: trees organize their crowns into canopy layers according to both 184 

their height and their crown area following the rules of the PPA model, which mechanistically 185 

models light competition. Panel B: Biogeochemical structure and compartmental pools. The 186 

green, brown, and black lines are the flows of carbon, nitrogen, and coupled carbon and nitrogen, 187 

respectively. The green box is for carbon only. The brown boxes are N pools. The black boxes 188 

are for both carbon and nitrogen pools, where X can be C (carbon) and N (nitrogen). The C:N 189 

ratios of leaves, fine roots, seeds, and microbes are fixed. The C:N ratios of woody tissues, fast 190 

soil organic matter (SOM), and slow SOM are flexible. Only one tree’s C and N pools are shown 191 

in this figure. The model can have multiple cohorts of trees, which share the same pool structure. 192 

The dashed line separates the plant and soil processes. 193 
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 194 

Nitrogen uptake The rate of nitrogen uptake (U, g N m-2 hour-1) from the soil mineral 195 

nitrogen pool is an asymptotically increasing function of fine root biomass density (Roottotal, kgC 196 

m-2), following McMurtrie et al. (2012)  197 

𝑈 = 𝑓8,9:; · 𝑁9=>?@:A ·
BCC#DEDFG

BCC#DEDFGHBCC#I
 , (Eq. 3) 

where, Nmineral is the mineral N in soil (g N m-2), fU,max is the maximum rate of nitrogen 198 

absorption per hour when Roottotal approaches infinity, Root0 is a constant of root biomass (kg C 199 

m-2) at which the nitrogen uptake rate is half of the parameter fU,max.  The nitrogen uptake rate 200 

of an individual tree (Utree, g N hour-1 tree-1) is calculated as follows: 201 

𝑈J@?? = 𝑈 · BCC#DKLL
BCC#DEDFG

 ,  (Eq. 4) 

where, Roottree is the fine root biomass of a tree (kg C tree2). The N absorbed by roots enters into 202 

the NSN pool and then is allocated to plant tissues through plant growth following carbon flows. 203 

Allocation Carbon assimilated by leaves via photosynthesis enters into the NSC pool first 204 

and is subsequently used for respiration, growth, and reproduction. The partitioning of carbon 205 

and nitrogen into the plant pools (i.e., leaves, fine roots, and sapwood) is limited by a set of 206 

allometric equations and the C:N ratios of these pools. Empirical allometric equations relate 207 

woody biomass (including coarse roots, bole, and branches), crown area, and stem diameter. The 208 

individual-level dimensions of a tree, i.e., height (Z), biomass (S), and crown area (ACR) are 209 

given by empirical allometries (Dybzinski et al., 2011; Farrior et al., 2013): 210 

𝑍(𝐷) = 𝛼P𝐷QR   

𝑆(𝐷) = 0.25𝜋𝛬𝜌4𝛼P𝐷,HQR   

𝐴[B(𝐷) = 𝛼\𝐷Q]    

(Eq. 5) 
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where Z is tree height, S is total woody biomass carbon (including bole, coarse roots, and 211 

branches) of a tree,  ac and aZ are PFT-specific constants, θc=1.5 and θZ=0.5 (Farrior et al., 212 

2013) (although they could be made PFT-specific if necessary), π is the circular constant, Λ is a 213 

PFT-specific taper constant, and ρW is PFT-specific wood density (kg C m-3) . 214 

We set targets for leaf, fine root, and sapwood cross-sectional area that govern plant 215 

allocation of non-structural carbon and nitrogen during growth. These targets are related by the 216 

following equations based on the assumption of the pipe model (Shinozaki, Kichiro et al., 1964):  217 

𝐿_∗ (𝐷, 𝑝) = 𝑙_∗ · 𝐴[B(𝐷) · 𝐿𝑀𝐴 · 𝑝(𝑡) 

𝐹𝑅_∗(𝐷) = 𝜑Bh · 𝑙_∗ ·
𝐴[B(𝐷)
𝑆𝑅𝐴  

𝐴i4,_
∗ (𝐷) = 𝛼[ij · 𝑙_∗ · 𝐴[B(𝐷) 

(Eq. 6) 

where Lk* (D, p) is the target leaf mass of canopy-level k at given stem diameter (D), lk* is the 218 

target leaf area per unit crown area of a given PFT at canopy-level k, ACR(D) is the crown area of 219 

a tree with diameter D, LMA is PFT-specific leaf mass per unit area, and p(t) is a PFT-specific 220 

function ranging from zero to one that governs leaf phenology (Weng et al., 2015).  Note, here 221 

jRL is fixed for each PFT and will remain so for the fixed allocation strategies and the 222 

competitive allocation strategies. The process of choosing a context-dependent competitive 223 

dominant φRL will take place after finding the fitness of each φRL in monoculture and in 224 

competition with other PFTs (i.e., different values of φRL). The phenology function p(t) takes 225 

values 0 (non-growing season) or 1 (growing season) following the phenology model of LM3-226 

PPA (Weng et al., 2015). The onset of a growing season is controlled by two variables, growing 227 

degree days (GDD), and a weighted mean daily temperature (Tpheno), while the end of a growing 228 

season is controlled by Tpheno. FRk*(D) is the target fine root biomass at tree diameter D and 229 

canopy-level k, φRL is the target ratio of total root surface area to the total leaf area, SRA is 230 
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specific root area,	𝐴i4,_
∗ (𝐷) is the target cross sectional area of sapwood at canopy-level k, and 231 

aCSA is an empirical constant (the ratio of sapwood cross-sectional area to target leaf area). 232 

In the model simulation, plant growth is updated at a daily time step. For each simulated 233 

day, the model calculates the amount of carbon and nitrogen that are available for growth (i.e., 234 

building new tissues) according to the total NSC and NSN and current leaf and fine root 235 

biomass.  Basically, the available NSC (NSCg) is the summation of a small fraction of the total 236 

NSC in an individual plant and the differences between the targets of leaf and fine roots and their 237 

current biomass capped by a larger fraction of NSC (Eq. 7).  238 

𝑁𝑆𝐶𝑔 = 𝑚𝑖𝑛q𝑓1𝑁𝑆𝐶, 𝑓2𝑁𝑆𝐶 + 𝐿∗ + 𝐹𝑅∗ − 𝐿 − 𝐹𝑅t, (Eq. 7) 

where L* and FR* are the targets of leaves and fine roots, respectively, and functions of plant size 239 

(see Eq. 6); L and FR are current leaf and fine roots biomass. The parameters f1 and f2 give the 240 

daily availability of NSC during periods of leaf flush at the beginning of a growing season and 241 

normal growth after plant leaves and fine roots approach their targets. Usually, parameter f1 is 242 

much greater than f2. We let f1=0.05 and f2= 1/(365x3) in this study. The equation for available 243 

NSN is analogous.  244 

The allocation of the available NSC and NSN to wood, leaves, fine roots, and seeds is 245 

calculated in four steps. 1) First, the model allocates a small fraction of the available NSC (0.15 246 

in this study) for sapwood growth.  2) Then it allocates to leaves and fine roots by tracking PFT-247 

specific targets for leaf area per unit crown area (l*) and the ratio of fine root area per to leaf area 248 

(φRL).  As long as there are sufficient available NSC and NSN, plants allocate them to new leaves 249 

and fine roots to close the gap between their current and target areas. 3) If there are extra 250 

available NSC and NSN left after the leaves and fine roots reached their targets, they will be 251 
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allocated to sapwood and seeds. Since the C:N ratios of leaves, fine roots, and seeds are fixed in 252 

this model, the nitrogen used to construct these tissues is simply the carbon allocated from NSC 253 

to them divided by their leaf C:N ratio, respectively. 4) When the available NSN cannot meet the 254 

demand, the excess carbon is re-allocated to sapwood because sapwood requires less nitrogen 255 

than those of leaves, fine roots, and seeds at the same supply of carbon. 256 

Based on these allocation rules, the mean of allocations of carbon and nitrogen to leaves, 257 

fine roots, and wood over a growing season are governed by the targets for the leaf area per unit 258 

crown area (i.e., crown leaf area index, l*) and fine root area per unit leaf area (φRL). Since the 259 

crown leaf area index, l*, is fixed in this study, φRL is the key parameter determining the relative 260 

allocation of carbon to fine roots and stems. A high φRL means a high relative allocation to fine 261 

roots and therefore low relative allocation to stems, and vice versa. 262 

2.2 Site and Data  263 

Data pertaining to vegetation, climate, and soil at Harvard Forest (Aber et al., 1993; Hibbs, 1983; 264 

Urbanski et al., 2007) were used to design the plant functional types (PFTs) and ecosystem 265 

nitrogen levels used in the simulation experiments, to drive the model, and to calibrate model 266 

parameters.  Harvard Forest is located in Massachusetts, USA (42.54°, -72.17°). The climate of 267 

Harvard Forest is cool temperate with annual precipitation 1050 mm, distributed fairly evenly 268 

throughout the year. The annual mean temperature is 8.5 °C with a high monthly mean 269 

temperature of 20°C in July and a low of -7°C in January. The soils are mainly sandy loam with 270 

average depth around 1 m and are moderately well drained in most areas. The vegetation is 271 

deciduous broadleaf/mixed forest with major species red oak (Quercus rubra), red maple (Acer 272 

rubrum), black birch (Betula lenta), white pine (Pinus strobus), and hemlock (Tsuga canadensis) 273 

(Compton and Boone, 2000; Savage et al., 2013). The data used to drive our model runs are gap-274 
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filled hourly meteorological data at Harvard Forest from 1991 to 2006, obtained from North 275 

American Carbon Program (NACP) Site-Level Synthesis datasets (Barr et al., 2013). 276 

2.3 Simulation experiments 277 

We set two atmospheric CO2 concentration ([CO2]) levels: 380 ppm and 580 ppm, and 278 

eight ecosystem total nitrogen levels (ranging from 114.5 gN m-2 to 552 gN m-2 at the interval of 279 

62.5 gN m-2) for our simulation experiments (Table 1). In all the simulation experiments, we 280 

assume there are no nitrogen inputs or outputs to the system. The nitrogen cycles through the 281 

plant and soil pools and is redistributed among them via plant demographic processes, soil 282 

carbon transfers, and plant uptake. The PFTs were based on a PFT of an evergreen needle-leaved 283 

tree with different leaf to fine root area ratios, φRL, in the range from 1 to 8 (Table 1). Simply 284 

stated, the PFTs we investigate only differ in parameter φRL.  285 

We define the model runs initialized with only one fixed-φRL PFT as “fixed-allocation 286 

runs” although the actual allocation of carbon to different plant tissues varies with [CO2] 287 

concentration and ecosystem nitrogen availability. We define the model runs initialized with 288 

multiple PFTs as “competition runs” (eight PFTs with different φRL at the beginning, although 289 

many are driven to extinction during a given model run). We conducted one set of fixed-290 

allocation runs and two sets of competition runs (Table 1).  291 

In the fixed-allocation runs, we run the full factorial combinations of the eight PFTs with 292 

root/leaf area ratios (φRL) from 1 to 8 and the eight ecosystem total nitrogen levels (Table 1), but 293 

only those with φRL <=6 survived at ambient CO2 (380 ppm) because the carbon consumed by 294 

fine roots exceeded what leaves provided at high φRL.  The fixed allocation runs are for exploring 295 

the model predictions of gross primary production (GPP), net primary production (NPP), 296 
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allocation, and biomass at equilibrium with fixed root/leaf area ratios (φRL) and ecosystem total 297 

nitrogen levels, analogous to the fixed allocation schemes used in many VDMs.  298 

 299 

Table 1 Simulation experiments 300 

Type Model runs Initial PFT(s) 
φRL 

Ecosystem total 
nitrogen levels 

CO2 
concentration 

[CO2] 

Fixed-
allocation 
runs 

One model run per 
combination of PFT 
(φRL ), nitrogen level, 
and CO2 
concentration 

One of the 
following PFTs: 
φRL= 1, 2, 3, 4, 5, 6, 

7, or 8 

 
Eight levels 
ranging from 114.5 
g N m-2 to 552 g N 
m-2 at the interval 
of 62.5 g N m-2:  

114.5 g N m-2, 

177 g N m-2, 
239.5 g N m-2, 
302 g N m-2, 
364.5 g N m-2, 
427 g N m-2, 
489.5 g N m-2, 
552 g N m-2 

 
 
 
 

Ambient: 
380 ppm 

 
Elevated: 
 580 ppm 

 

Competition 
runs I 

One model run per 
combination of 
nitrogen level and 
CO2 concentration  

All the PFTs (φRL= 
1~ 8) used in the 
fixed-allocation 
runs 

Competition 
runs II 

One model run per 
combination of 
nitrogen level and 
CO2 concentration 

Eight PFTs with 
φRL ranging from 
4.5-0.5i to 8.5-0.5i 
at the interval of 
0.5, where i denotes 
the eight nitrogen 
levels from 114.5 to 
552 gN m-2. 

 301 

In competition runs I, we used the same PFTs as in the fixed-allocation runs, where their 302 

φRL varies from 1 to 8 at the interval of 1.0 and the ecosystem total nitrogen levels are the same 303 

as those used in the fixed-allocation runs (Table 1). This set of competition runs was used to 304 

explore successional patterns at both ambient and elevated CO2 concentrations (380 ppm and 305 

580 ppm, respectively). However, this set of model runs could not show the details of 306 

equilibrium plant biomass and allocation patterns along the nitrogen gradient because of the 307 

large intervals between the φRL values.  308 
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To achieve greater resolution in our competition predictions, we designed the competition 309 

runs II using a dynamic PFT combination scheme according to the ranges of φRL obtained from 310 

the competition runs I that could survive at a particular nitrogen level at both CO2 311 

concentrations. For each nitrogen level, we set eight PFTs with φRL that varied in a range 3.5 312 

(e.g., x ~ x+3.5) at the interval of 0.5, starting with the highest φRL of 8.0 at the lowest N level 313 

(114.5 gN m-2) and decreasing 0.5 per level of increase in ecosystem total N. Let i=1, 2, …, 8 314 

denote the eight N levels from 114.5 to 552 gN m-2, the φRL of the eight PFTs at each level are 315 

(5.0-0.5i, 5.5-0.5i, …, 8.5-0.5i) (Table 1). For example, at the nitrogen of 114.5 gN m-2 (i  = 1), 316 

the φRL of the eight PFTs are 4.5, 5.0, …, 8.0 and at 177 gN m-2 (i = 2), they are 4.0, 4.5, …, 7.5.  317 

For both fixed-allocation and competition runs, visual inspection indicated that stands had 318 

reached equilibrium after ~1200 years. To be conservative, we present equilibrium data by 319 

averaging model properties between years 1400 and 1800. We compared simulated equilibrium 320 

gross primary production (GPP), net primary production (NPP), allocation (both absolute amount 321 

of carbon and fractions of the total NPP), and plant biomass of the competition runs II with those 322 

from the fixed-allocation runs. We used the results from one PFT (φRL=4) to highlight the 323 

differences of plant responses with competitively optimal allocation strategies. The complete 324 

results from the fixed-allocation runs are shown in the Figures S1 and S2 in supplementary 325 

materials. 326 

3 Results 327 

In the competition runs, the equilibrium GPP and NPP increase with total nitrogen at values 328 

similar to those of the fixed-allocation runs (Fig. 2: a and b). However, the CO2 stimulation of 329 

NPP increases with total nitrogen in competition runs more than it in the fixed-allocation runs. 330 

Elevated [CO2] increases carbon use efficiency (defined as the ratio of NPP to GPP in this study, 331 
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NPP/GPP) in both the fixed-allocation and competition runs (Fig. 2: c). Also, the dependence of 332 

NPP/GPP on nitrogen is higher in the competition runs than it in the fixed-allocation runs. 333 

 334 

 335 

Figure 2 Equilibrium Gross Primary Production (GPP, a), Net Primary Production (NPP, 336 

b), and Carbon Use Efficiency (NPP/GPP, c). The closed symbols with solid line represent 337 

competition runs (comp.). The open symbols with dashed lines represent fixed-allocation runs 338 

(only φRL =4 shown in this figure).  339 
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 340 

Figure 3  Allocation to leaves, fine roots, and wood tissues of the competition and fixed-341 

allocation runs at the eight total nitrogen levels and two CO2 concentrations. The panels a, c, and 342 

e show the NPP allocated to the tissues and the panels b, d, and f show the fractions of the 343 

allocation in total NPP. The closed symbols with solid line represent competition runs (comp.). 344 

The open symbols with dashed lines represent fixed-allocation runs (only φRL=4 shown in this 345 

figure). 346 

 347 
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Allocation of NPP to leaves increases with total nitrogen in all conditions, i.e. both 348 

competition and fixed-allocation at both ambient [CO2] and elevated [CO2] (Fig. 3: a). Foliage 349 

NPP is similar in these four model runs when N is low. At high nitrogen (>400 g N m-2), 350 

competition runs have higher foliage NPP than the fixed-allocation runs generally. Allocation to 351 

leaves is relatively stable across the nitrogen gradient at the two CO2 concentration levels (Fig. 3: 352 

b).   The fraction of NPP allocated to leaves changes little with nitrogen (Fig. 3: b) and it is 353 

universally higher at ambient [CO2] than at elevated [CO2]. 354 

Allocation of NPP to fine roots is hump-shaped with increasing nitrogen in competition 355 

runs, whereas it increases monotonically with increasing nitrogen in fixed-allocation runs (Fig. 3: 356 

c). Elevated [CO2] increases fine root allocation at low nitrogen in competition runs but 357 

decreases root allocation irrespective of nitrogen in fixed-allocation runs (Fig. 3: c). The fraction 358 

of NPP allocated to fine roots decreases with nitrogen at both CO2 concentrations in competition 359 

runs but it increases slightly in fixed-allocation runs (Fig. 3: d). In fixed-allocation runs, elevated 360 

CO2 reduces the fraction of NPP allocated to fine roots at all nitrogen levels. In competition runs, 361 

fractional allocation to fine roots increases at elevated [CO2] when ecosystem total nitrogen is 362 

low (e.g., 114.5 - 302 g N m-2) and decrease at elevated [CO2] when ecosystem total nitrogen is 363 

high (e.g., 364-552 g N m-2).  364 

In the reverse of the fine root response, NPP allocation to woody tissues increases with 365 

total nitrogen in both competition and fixed-allocation runs (Fig. 3: e). In competition runs, the 366 

fraction of allocation to woody tissues decreases at elevated [CO2] when ecosystem total 367 

nitrogen is low (e.g., 114 – 245 g N m-2) and increases at elevated [CO2] when ecosystem total 368 

nitrogen is high (e.g., 302 – 552 g N m-2).  369 

 370 
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 371 

Figure 4 Plant biomass responses to elevated [CO2] and nitrogen 372 

Panel a shows the equilibrium plant biomass (means of simulated plant biomass from model run 373 

year 1400 to 1800) in competition runs and fixed-allocation runs (φRL=4). Panel b shows the 374 

ratio of simulated plant biomass at elevated [CO2] to ambient [CO2] for both competition and 375 

fixed-allocation runs. Panels c and d show the comparisons with fixed-allocation runs with φRL 376 

from 1 to 6 at ambient (c) and elevated [CO2] (d). The closed symbols with solid line represent 377 

competition runs. The open symbols with dashed lines represent fixed-allocation runs (φRL 378 

ranges from 1 to 6).  379 

 380 

  381 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-55
Manuscript under review for journal Biogeosciences
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



 21 

As a result of the changes in competitively-optimal allocation, plant biomass increases 382 

dramatically with ecosystem nitrogen in competition runs compared with that in fixed-allocation 383 

runs (Fig. 4: a). The effects of elevated [CO2] on plant biomass increase with nitrogen in 384 

competition runs but are constant overall in fixed-allocation runs (Fig. 4: b). Compared with the 385 

full spread of fixed-allocation runs with φRL ranging from 1 to 6, competition runs have high root 386 

allocation at low nitrogen and low root allocation at high nitrogen due to changes in the 387 

dominant competitive allocation strategy, which amplifies plant biomass responses to elevated 388 

[CO2] with increasing nitrogen (Fig. 4: c and d). 389 

Generally, in the fixed-allocation runs, GPP and NPP increase by a factor of three along 390 

the gradient of nitrogen used in this study (114.5 - 552 g N m-2) at both ambient and elevated 391 

[CO2] (Figs. S1 and S2). As φRL increases (i.e. more fine roots per unit leaf), GPP and NPP 392 

decrease at all the nitrogen levels overall, though not monotonically. The magnitude of 393 

differences in GPP and NPP due to differences in fixed allocation within a given nitrogen level is 394 

comparable to the magnitude of differences in GPP and NPP due to nitrogen level within a given 395 

fixed allocation strategy (Fig. S1: a and b) when φRL is in the range that allows plants to grow 396 

normally (1~5 in the case of ambient [CO2]). At φRL=6, the simulated trees just barely survive 397 

with very limited growth, and their GPP and NPP are close to zero. As prescribed by the 398 

definition of φRL, allocation of NPP to fine roots increases with φRL in fixed-allocation runs (Fig. 399 

S1: c). As a consequence, allocation of NPP to wood decreases as φRL increases (Fig. S1: d). 400 

Allocation to leaves does not change much with φRL. (Fig. S1: e, note differences in scale). 401 

Correspondingly, plant biomass at equilibrium decreases with φRL and almost falls to zero at 402 

φRL=6.  Total nitrogen affects the allocation to fine roots and wood (Fig. S1: d) because extra 403 

carbon is diverted to woody tissues in our model when nitrogen is limited. However, the 404 
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amplitude of changes in GPP and NPP induced by nitrogen availability is lower than the 405 

amplitude of changes resulting from different values of φRL in the fixed-allocation runs.  406 

4 Discussion 407 

4.1 Mechanisms of model predictions 408 

In our model, the simulation of competition for light and soil resources is based on two 409 

fundamental mechanisms: 1) competition for light is based on the height of trees according to the 410 

rules of the PPA model (Strigul et al., 2008); and 2) individual nitrogen uptake is linearly 411 

dependent on the fine root surface area of an individual tree relative to that of its neighbors 412 

(Dybzinski et al., 2019; McMurtrie et al., 2012; Weng et al., 2017). These two mechanisms 413 

define an allocational tradeoff between wood and fine roots for carbon and nitrogen investment 414 

in different [CO2] and nitrogen environments. Allowing competition for these resources to 415 

determine the dominant traits results in very different predicted allocation patterns – and thus 416 

ecosystem level responses – than those of fixed allocation strategies. For example, fractional 417 

wood allocation increases with increasing nitrogen availability under competitive allocation but 418 

decreases – the opposite qualitative response – under fixed allocation (Fig. 3: f). Consequently, 419 

equilibrium plant biomass is predicted to increase much more with increasing nitrogen 420 

availability under a competitive- than under a fixed-allocation strategy (Fig. 4: c, d). In nature, 421 

the effects of competition on dominant plant traits may occur through species replacement or 422 

community assembly (akin to the mechanism in our model), but it may also occur through 423 

adaptive plastic responses or in-place sub-population evolution of ecotypes.   424 

Although the strategy that maximizes the growth rate in a fixed-allocation strategy 425 

allocates very little to fine roots (Figs. S1 and S2), the competitively optimal strategy allocates 426 

more carbon to fine roots to compete for nitrogen, a competitive effect termed “fine-root 427 
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overproliferation” (McNickle and Dybzinski, 2013). Elevated [CO2] increases the carbon gain of 428 

leaves, making more carbon available for nitrogen competition and thus exacerbating the fine-429 

root overproliferation (Dybzinski et al., 2015). Changes in the height at which understory trees 430 

transition to the canopy from low nitrogen to high nitrogen indicate a shift from the importance 431 

of competition for soil nitrogen to the importance of competition for light as ecosystem nitrogen 432 

increases (Fig. S3).   433 

 Under competitive allocation, increases in NPP and plant biomass across the nitrogen 434 

gradient are greater than the increases in NPP and plant biomass under fixed allocation (Fig. S1) 435 

because the most competitive type shifts from high fine root allocation to low fine root allocation 436 

as ecosystem total nitrogen increases from 117 to 552 g N m-2 (Figs. S4 and S5). This greatly 437 

reduces the carbon cost of belowground competition. The slight decrease in the fraction of NPP 438 

allocated to leaves at elevated [CO2] occurs because of increases in total NPP and constant 439 

absolute NPP allocation to foliage. It is consistent with free air CO2 enhancement (FACE) 440 

experiments that show leaf area index (LAI) in closed-canopy forests is not responsive to 441 

elevated [CO2] (Norby et al., 2003).   442 

Because most nitrogen uptake is via mass flow and diffusion and because both of these 443 

mechanisms depend on sink strength, individuals with relatively greater fine root mass than their 444 

neighbors take a greater share of nitrogen, as was recently demonstrated empirically (Dybzinski 445 

et al., 2019). This is consistent with the idea mentioned above that fine roots may overproliferate 446 

for competitive reasons relative to lower optimal fine root mass in the hypothetical absence of an 447 

evolutionary history of competition (Craine, 2006; McNickle and Dybzinski, 2013). The 448 

increased fitness (i.e., reproductive success) of the relatively greater strategy increases the 449 

absolute fine root mass. But again, individuals with even relatively greater fine root mass take a 450 
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greater share of nitrogen, leading to what has been termed a “tragedy of the commons” (Gersani 451 

et al., 2001). At high soil nitrogen, height-structured competition for light (also a game-theoretic 452 

tragedy of the commons, Falster and Westoby, 2003; Givnish, 1982) prevails, and trees with 453 

greater relative allocation to trunks prevail. The balance between these two competitive priorities 454 

can be observed in our model predictions as a shift from fine root allocation to wood allocation 455 

as soil nitrogen increases. This may also explain why root C:N ratio is highly variable 456 

(Dybzinski et al., 2015; Luo et al., 2006; Nie et al., 2013): a high density of fine roots in soil may 457 

be more important than the high absorption ability of a single root in competing for soil nitrogen 458 

in the usually low mineral nitrogen soils. 459 

Our model predicts that the ratio of plant biomass under elevated [CO2] relative to plant 460 

biomass under ambient [CO2] should increase with increasing nitrogen due to the shift of carbon 461 

allocation from fine roots to woody tissues. In contrast, the analytic model of Dybzinski et al. 462 

(2015) predicts that the ratio of plant biomass under elevated [CO2] relative to plant biomass 463 

under ambient [CO2] should be largely independent of total nitrogen because of an increasing 464 

shift in carbon allocation from long-lived, low-nitrogen wood to short-lived, high-nitrogen fine 465 

roots under elevated [CO2] and with increasing nitrogen. This significant difference between 466 

these two predictions traces back to differences in how fine root stoichiometry is handled in the 467 

two models. In the model of Dybzinski et al. (2015), the fine root C:N ratio is flexible and the 468 

marginal nitrogen uptake capacity per unit of carbon allocated to fine roots depends on its 469 

nitrogen concentration. Like the model presented here, the model of Dybzinski et al. (2015) 470 

predicts decreasing fine root mass with increasing nitrogen availability. Unlike the model 471 

presented here (which has constant fine root nitrogen concentration), the model of Dybzinski et 472 

al. (2015) predicts increasing fine root nitrogen concentration with increasing nitrogen 473 
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availability. As a result, there is less nitrogen to allocate to wood as nitrogen increases in the 474 

model of Dybzinski et al. (2015) than there is in the model presented here. These countervailing 475 

factors even out the ratio of plant biomass under elevated [CO2] relative to plant biomass under 476 

ambient [CO2] across the nitrogen gradient in Dybzinski et al. (2015), whereas their absence 477 

amplifies this ratio with increasing nitrogen in the model presented here. Our ability to diagnose 478 

and understand this discrepancy highlights the utility of deploying closely-related analytical and 479 

simulation models (Weng et al., 2017). It also points to a critical empirical research gap: which 480 

model’s fine root (and strictly speaking, active root, McCormack et al., 2017) assumptions about 481 

stoichiometry are closer to the truth?  482 

4.2 Model complexity and uncertainty 483 

 Compared with the conventional pool-based vegetation models that use pools and fluxes 484 

to represent plant demographic processes at a land simulation unit (e.g., grid or patch), VDMs 485 

add two new mechanisms. The first mechanism is the inclusion of stochastic birth and mortality 486 

processes of individuals (i.e., demographic processes). These processes allow the models to 487 

predict population dynamics and transient vegetation structure, such as size-structured 488 

distribution and crown organization (e.g., Moorcroft et al., 2001; Strigul et al., 2008). With 489 

changes in vegetation structure, allocation and mortality rates can change, generating a different 490 

carbon storage accumulation curve compared with those predicted by pool-based models where 491 

vegetation structure is not explicitly represented (e.g., Weng et al., 2015). The second new 492 

mechanism is the simulated shift in dominant plant traits during succession due to shifting 493 

competitive outcomes among different PFTs, which changes the allocation between fast- and 494 

slow-turnover pools and thus the parameters of allocation and the residence time of carbon in the 495 

ecosystem.  496 
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Together, these mechanisms may alter long-term predictions of terrestrial carbon cycling 497 

due to changes in PFT-based parameters (Dybzinski et al., 2011; Farrior et al., 2013; Weng et al., 498 

2015). As described in the Introduction, current pool-based models can be described by a linear 499 

system of equations characterized by the key parameters of allocation, residence time, and 500 

transfer coefficients (Eq. 1) with the rigid assumption of unchangeable plant types (Luo et al., 501 

2012; Xia et al., 2013). In VDMs however, allocation, residence time, leaf traits, phenology, 502 

mortality, plant forms, and their responses to climate change are all strategies of competition 503 

whose success varies with the environmental conditions and the traits of the individuals they are 504 

competing against. To make predictions of carbon cycle responses to the novel conditions of 505 

climate change, we must understand what determines the most competitive strategy, how the 506 

most competitive strategy changes with conditions, and how the most competitive strategy 507 

impacts the carbon cycle.  508 

Many trade-offs between plant traits can shift in response to environmental and biotic 509 

changes, limiting the applicability of varying a single trait, as we have in this study. For example, 510 

allocation, leaf traits, mycorrhizal types, and nitrogen fixation can all change with ecosystem 511 

nitrogen availability (Menge et al., 2017; Ordoñez et al., 2009; Phillips et al., 2013; Vitousek et 512 

al., 2013). The unrealistic effects of model simplification can be corrected by adding important 513 

tradeoffs that are missing. For example, the positive feedback between root allocation and SOM 514 

decomposition plays a role in mitigating the effects of tragedies of the commons of root over-515 

proliferation (e.g., Gersani et al., 2001; Zea-Cabrera et al., 2006) due to a negative feedback 516 

induced by root turnover. High root allocation increases the decomposition rate of SOM and the 517 

supply of mineral nitrogen because of the high turnover rate of root litter, which favors a strategy 518 

of high wood allocation and reduces the competitive optimal fine root allocation. This negative 519 
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feedback indicates that the model structure is flexible and that we can incorporate correct 520 

mechanisms step by step to improve model prediction skills. Testing single strategies is still a 521 

necessary step to improving our understanding of the system and prediction skills of the models, 522 

though it could lead to unrealistic responses sometimes. 523 

4.3 Implications for Earth system modeling 524 

In this study, we set forth a hypothesis for the tradeoffs between light competition and 525 

nitrogen uptake via allocation based on insights gained from the simpler model of Dybzinski et 526 

al. (2015) to predict allocation as an emergent property of competition. One advantage of 527 

building a model in this way is that the vegetation dynamics are predicted from first principles, 528 

rather than based on the correlations between vegetation properties and environmental 529 

conditions. For vegetation models designed to predict the effects of climate change, the 530 

important operational distinction is that the fundamental rules cannot or will not change as 531 

climate changes. Nor, presumably, will the underlying ecological and evolutionary processes 532 

change as climate changes. The emergent properties can change as climate changes however, and 533 

the models built on the “scale-appropriate” unbreakable constraints and ecological and 534 

evolutionary processes will be able to accurately predict changes in emergent ecosystem 535 

properties.  536 

This modeling approach also demands improvement in model validation and benchmarking 537 

systems (Collier et al., 2018; Hoffman et al., 2017). As shown in this study, allocation responses 538 

to elevated CO2 at different nitrogen levels in fixed-allocation runs are opposite to those in 539 

competitive-allocation runs. For example, in fixed-allocation runs, elevated [CO2] increases 540 

wood allocation and decreases fine root allocation at low nitrogen; whereas in competitive-541 

allocation runs elevated [CO2] leads to low wood allocation and high fine root allocation. Simply 542 
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calibrating against short-term observational data may improve the agreements with observations 543 

but would not change model predictions because these results emerge from the fundamental 544 

assumptions of the models. An updated model benchmarking system should have the metrics of 545 

competitive plant traits during the development of ecosystems and their responses to changes in 546 

climate. 547 

5 Conclusions 548 

Overall, our study illustrates that including the competition processes for light and soil 549 

resources in a game-theoretic vegetation demographic model can substantially change the 550 

prediction of the contribution of ecosystems to the global carbon cycle. Allowing the model to 551 

track the competitive allocation strategies can generate significantly different ecosystem-level 552 

predictions than those of fixed allocation strategies. Building such a model requires 553 

differentiating between the unbreakable tradeoffs of plant traits and ecological processes from 554 

the emergent properties of ecosystems. Drawing on insights from closely-related analytical 555 

models to develop and understand more complicated simulation models seems, to us, 556 

indispensable. Evaluating these models also requires an updated model benchmarking system 557 

that includes the metrics of competitive plant traits during the development of ecosystems and 558 

their responses to climate changes. 559 
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